2 resultados para sawn wood

em Instituto Politécnico do Porto, Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rehabilitation is becoming more and more usual in the construction sector in Portugal. The introduction of newer construction materials and technical know-how of integrating different materials for achieving desired engineering goals is an important step to the development of the sector. Wood industry is also getting more and more adapted to composite technologies with the introduction of the so called “highly engineered wood products” and with the use of modification treatments. This work is an attempt to explain the viability of using stainless steel and glass fibre reinforced polymer (GFRP) as reinforcements in wood beams. This thesis specifically focuses on the flexural behaviour of Portuguese Pine unmodified and modified wood beams. Two types of modification were used: 1,3-dimethylol-4,5- dihydroxyethyleneurea (DMDHEU) resin and amid wax. The behaviour of the material was analysed with a nonlinear model. The latter model simulates the behaviour of the reinforced wood beams under flexural loading. Small-scale beams (1:15) were experimented in flexural bending and the experimental results obtained were compared with the analytical model results. The experiments confirm the viability of the reinforcing schemes and the working procedures. Experimental results showed fair agreement with the nonlinear model. A strength increase between 15% and 80% was achieved. Stiffness increased by 40% to 50% in beams reinforced with steel but no significant increase was achieved with the glass fibre reinforcement.